Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20244991

ABSTRACT

With the success of mRNA vaccines during the COVID-19 pandemic and CAR T-cell therapies in clinical trials, there is growing opportunity for immunotherapies in the treatment of many types of cancers. Lentiviral vectors have proven effective at delivery of genetic material or gene editing technology for ex vivo processing, but the benefits and promise of Adeno-associated virus (AAV) and mRNA tools for in vivo immunotherapy have garnered recent interest. Here we describe complete synthetic solutions for immuno-oncology research programs using either mRNA-vaccines or virus-mediated cell and gene engineering. These solutions optimize workflows to minimize screening time while maximizing successful research results through: (1) Efficiency in lentiviral packaging with versatility in titer options for high-quality particles. (2) A highthroughput viral packaging process to enable rapid downstream screening. (3) Proprietary plasmid synthesis and preparation techniques to maintain ITR integrity through AAV packaging and improve gene delivery. (4) Rapid synthesis, in vitro transcription, and novel sequencing of mRNA constructs for complete characterization of critical components such as the polyA tail. The reported research demonstrates a streamlined approach that improves data quality through innovative synthesis and sequencing methodologies as compared to current standard practices.

2.
Research and Practice in Thrombosis and Haemostasis ; 4(Supplement 2):1-28, 2020.
Article in English | EMBASE | ID: covidwho-20232385

ABSTRACT

Late-Breaking and COVID-19 Oral Communication SessionLB/CO01.1 A Novel Adeno Associated Virus (AAV) Gene Therapy (FLT180a) Achieves Normal FIX Activity Levels in Severe Hemophilia B (HB) Patients (B-AMAZE Study): P. Chowdary1,2, S. Shapiro3, M. Makris4, G. Evans5, S. Boyce6, K. Talks7, G. Dolan8, U. Reiss9, M. Phillips1, A. Riddell1, M.R. Peralta1, M. Quaye2, E. Tuddenham1, J. Krop10, G. Short11, S. Kar11, A. Smith11, A. Nathwani1,2 1Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital NHS Foundation Trust, London, United Kingdom2University College London, London, United Kingdom3Oxford Haemophilia & Thrombosis Centre and Oxford NIHR BRC, Oxford, United Kingdom4University of Sheffield, Sheffield, United Kingdom5Kent & Canterbury Hospital, Canterbury, United Kingdom6University Hospital Southampton, Southampton, United Kingdom7Newcastle Haemophilia Comprehensive Care Centre, Newcastle, United Kingdom8Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom9St Jude Children's Research Hospital, Memphis, United States10Freeline, Boston, United States11Freeline, Stevenage, United Kingdom...Copyright © 2020 The Authors. Research and Practice in Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis.

3.
Therapeutic Delivery ; 12(6):427-442, 2021.
Article in English | EMBASE | ID: covidwho-2319896
4.
2023 OVMA (Ontario Veterinary Medical Association) Conference and Tradeshow ; : 284-288, 2023.
Article in English | CAB Abstracts | ID: covidwho-2286421

ABSTRACT

This paper describes the clinical signs and use of differential laboratory diagnostic techniques (computed tomography, cytology, histopathology, antigen/antibody detection and polymerase chain reaction) for infectious (viral, bacterial, fungal and parasitic) and non-infectious (inflammatory/immune mediated, neoplastic, cardiac, malformation, foreign body, smoke inhalation, aspiration of caustic material, non-cardiogenic, pulmonary oedema, traumativ, pneumothorax, pulmonary contusions and idiopathic) causes of respiratory diseases in cats and dogs in Ontario, Canada.

5.
Front Pharmacol ; 13: 1062408, 2022.
Article in English | MEDLINE | ID: covidwho-2271324

ABSTRACT

During the first half of 2022, the World Health Organization reported an outbreak of acute severe hepatitis of unknown aetiology (AS-Hep-UA) in children, following initial alerts from the United Kingdom (UK) where a cluster of cases was first observed in previously well children aged <6 years. Sporadic cases were then reported across Europe and worldwide, although in most countries incidence did not increase above the expected baseline. There were no consistent epidemiological links between cases, and microbiological investigations ruled out known infectious causes of hepatitis. In this review, we explore the evidence for the role of viral infection, superimposed on a specific host genetic background, as a trigger for liver pathology. This hypothesis is based on a high prevalence of Human Adenovirus (HAdV) 41F in affected children, together with metagenomic evidence of adeno-associated virus (Adeno-associated viruses)-2, which is a putative trigger for an immune-mediated liver injury. Roles for superantigen-mediated pathology have also been explored, with a focus on the potential contribution of SARS-CoV-2 infection. Affected children also had a high frequency of the MHC allele HLA-DRB1*04:01, supporting an immunological predisposition, and may have been vulnerable to viral coinfections due to disruption in normal patterns of exposure and immunity as a result of population lockdowns during the COVID-19 pandemic. We discuss areas of ongoing uncertainty, and highlight the need for ongoing scrutiny to inform clinical and public health interventions for this outbreak and for others that may evolve in future.

6.
Cytotherapy ; 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2283228

ABSTRACT

Adeno-associated virus (AAV) is one of the most exciting and most versatile templates for engineering of gene-delivery vectors for use in human gene therapy, owing to the existence of numerous naturally occurring capsid variants and their amenability to directed molecular evolution. As a result, the field has witnessed an explosion of novel "designer" AAV capsids and ensuing vectors over the last two decades, which have been isolated from comprehensive capsid libraries generated through technologies such as DNA shuffling or peptide display, and stratified under stringent positive and/or negative selection pressures. Here, we briefly highlight a panel of recent, innovative and transformative methodologies that we consider to have exceptional potential to advance directed AAV capsid evolution and to thereby accelerate AAV vector revolution. These avenues comprise original technologies for (i) barcoding and high-throughput screening of individual AAV variants or entire capsid libraries, (ii) selection of transduction-competent AAV vectors on the DNA level, (iii) enrichment of expression-competent AAV variants on the RNA level, as well as (iv) high-resolution stratification of focused AAV capsid libraries on the single-cell level. Together with other emerging AAV engineering stratagems, such as rational design or machine learning, these pioneering techniques promise to provide an urgently needed booster for AAV (r)evolution.

7.
Viruses ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2236069

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic with millions of human infections. There continues to be a pressing need to develop potential therapies and vaccines to inhibit SARS-CoV-2 infection to mitigate the ongoing pandemic. Epidemiological data from the current pandemic indicates that there may be sex-dependent differences in disease outcomes. To investigate these differences, we proposed to use common small animal species that are frequently used to model disease with viruses. However, common laboratory strains of mice are not readily infected by SARS-CoV-2 because of differences in the angiotensin-converting enzyme 2 (ACE2), the cellular receptor for the virus. To overcome this limitation, we transduced common laboratory accessible strains of mice of different sexes and age groups with a novel a triple AAV6 mutant, termed AAV6.2FF, encoding either human ACE2 or luciferase via intranasal administration to promote expression in the lung and nasal turbinates. Infection of AAV-hACE2-transduced mice with SARS-CoV-2 resulted in high viral titers in the lungs and nasal turbinates, establishment of an IgM and IgG antibody response, and modulation of lung and nasal turbinate cytokine profiles. There were insignificant differences in infection characteristics between age groups and sex-related differences; however, there were significant strain-related differences between BALB/c vs. C57BL/6 mice. We show that AAV-hACE2-transduced mice are a useful for determining immune responses and for potential evaluation of SARS-CoV-2 vaccines and antiviral therapies, and this study serves as a model for the utility of this approach to rapidly develop small-animal models for emerging viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Mice, Inbred C57BL , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
8.
Human Gene Therapy Methods ; 33(23-24):A210, 2022.
Article in English | EMBASE | ID: covidwho-2188081

ABSTRACT

The still ongoing pandemic has highlighted the unmet need for more innovative and rapidly adaptable vaccine platforms. Here, we introduce a novel vaccine platform which uses adenoassociated virus (AAV) capsids as scaffolds for large immunogenic epitopes to induce strong and specific immune responses. The structural viral proteins (VP) of AAVs are known to allow small peptide insertions in specific surface exposed regions. In order to allow for a better immune response, we introduced larger insertions of approximately 200 amino acids in the variable loop IV of the AAV2 or the AAV9 capsid. We produced and characterised AAV particles with or without genome. Empty, viruslike particles (VLP) were administered intramuscularly in adult rabbits and tested for their ability to induce an immune response delivered against the immunogenic protein sequence presented on the capsid surface. The immunised rabbits showed elevated levels of binding and neutralising IgG antibodies against the administered antigen. Moreover, VLPs presenting a large SARS-CoV-2 antigenic protein on the capsid surface were efficiently neutralised by serum from Comirnaty mRNA-vaccinated individuals. These VLPs also strongly activated T- and B-cell responses in PBMCs of individuals vaccinated with mRNA-based vectors as evident by the induction of CD4, CD8 and CD19 markers. This next-generation vaccine platform based on AAV capsids with large insertions of immunogenic sequences enables strong and specific immune responses without the need for genomically encoded immunogens, thus reducing the risk of potentially pathogenic intracellular processes associated with viral vector genomes and prolonged transgene expression.

9.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2163434

ABSTRACT

Gene therapy is widely used to treat incurable disorders and has become a routine procedure in clinical practice. Since viruses can exhibit specific tropisms, effectively penetrate the cell, and are easy to use, most gene therapy approaches are based on viral delivery of genetic material. However, viral vectors have some disadvantages, such as immune response and cytotoxicity induced by a disturbance of cell metabolism, including miRNA pathways that are an important part of transcription regulation. Therefore, any viral-based gene therapy approach involves the evaluation of side effects and safety. It is possible for such effects to be caused either by the viral vectors themselves or by the delivered genetic material. Many gene therapy techniques use non-coding RNA delivery as an effective agent for gene expression regulation, with the risk of cellular miRNA pathways being affected due to the nature of the non-coding RNAs. This review describes the effect of viral vector entry and non-coding RNA delivery by these vectors on miRNA signaling pathways.


Subject(s)
MicroRNAs , Viruses , MicroRNAs/metabolism , Genetic Vectors/genetics , Genetic Therapy/methods , Viruses/genetics , Genes, Viral , Gene Transfer Techniques
10.
Front Pharmacol ; 13: 1056385, 2022.
Article in English | MEDLINE | ID: covidwho-2142211

ABSTRACT

On 5 April 2022, the World Health Organization was notified of 10 cases of severe acute hepatitis of unknown etiology in children under 10 years of age in the United Kingdom. Although the exact cause of a proportion of pediatric acute hepatitis and acute liver failure cases was unclear, the above event has caused widespread concern worldwide. As of 14 September 2022, approximately 1,296 probable cases of acute hepatitis of unknown etiology have been reported from 37 countries/regions, of which approximately 55 required or received liver transplantation and 29 died. Although the etiology of acute hepatitis of unknown origin in children remains unclear, many hypotheses have been proposed about the disease. Instead of individual factors such as "adenovirus infection," "SARS-CoV-2 related," and "Adeno-associated virus 2 with helper virus coinfection," it is more likely due to a combination of factors. Accordingly, there is an urgent need for more data and research to clarify the disease etiology. This review aims to provide a historical perspective of acute hepatitis of unknown etiology in children in the past decades and summarize the current hypothesis and evidence on this emerging disease.

11.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: covidwho-2116873

ABSTRACT

Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.


Subject(s)
Adenoviridae Infections , COVID-19 , Epstein-Barr Virus Infections , Hepatitis , Parvovirinae , Child , Humans , Child, Preschool , Adenoviridae , Herpesvirus 4, Human , SARS-CoV-2 , Hepatitis/complications
12.
Drug Delivery Letters ; 12(1):35-45, 2022.
Article in English | EMBASE | ID: covidwho-1968951

ABSTRACT

Background: Gene therapy is a promising approach for the treatment of various diseases, including cancer, hereditary disorders, and some viral infections. The development of efficient and safe gene delivery systems is essential for facilitating gene transfer to various organs and tissues in vivo. Objective: In this review, we briefly describe the principal mechanisms of gene delivery systems, particularly electroporation, and discuss the latest advancements in the application of electro-poration for in vivo gene transfer. Methods: A narrative review of all the relevant publication known to the authors was conducted. Results: In recent years, electroporation-based strategies have emerged as an auspicious and versa-tile platform for efficient and controlled delivery of various biomolecules, including nucleic acids. Applying electric pulses of enough magnitude leads to the formation of hydrophilic pores in the cell membrane and allows the entry of otherwise membrane-impermeant molecules, such as DNA. Alt-hough electroporation has been initially developed for in vitro transfection of cells, it has recently advanced to preclinical in vivo applications and finally to clinical trials. Conclusion: Electroporation has already entered the clinical practice for antitumor therapy and may be an essential part of future personalized treatments. Given the ability of electroporation to deliver multiple genes in a single event, it will also certainly be further developed both as a stand-alone delivery approach and when coupled with other technologies.

13.
Antiviral Res ; 205: 105383, 2022 09.
Article in English | MEDLINE | ID: covidwho-1966338

ABSTRACT

The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/therapy , COVID-19 Vaccines , Dogs , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization
14.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
15.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792416

ABSTRACT

The SARS-CoV-2 pandemic has had a disastrous impact on global health. Although some vaccine candidates have been effective in combating SARS-CoV-2, logistical, economical, and sociological aspects still limit vaccine access globally. Recently, we reported on two room-temperature stable AAV-based COVID-19 vaccines that induced potent and protective immunogenicity following a single injection in murine and primate models. Obesity and old age are associated with increased mortality in COVID-19, as well as reduced immunogenicity and efficacy of vaccines. Here, we investigated the effectiveness of the AAVCOVID vaccine candidates in murine models of obesity and aging. Results demonstrate that obesity did not significantly alter the immunogenicity of either vaccine candidate. In aged mice, vaccine immunogenicity was impaired. These results suggest that AAV-based vaccines may have limitations in older populations and may be equally applicable in obese and non-obese populations.


Subject(s)
COVID-19 , Vaccines , Aged , Aging , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Disease Models, Animal , Humans , Mice , Obesity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
16.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1667342

ABSTRACT

The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Hepatitis Antibodies/blood , Hepatitis E virus/immunology , Muscles/virology , Viral Proteins/immunology , Absorption, Physiological , Animals , Dependovirus/immunology , Female , Hepatitis Antibodies/immunology , Hepatitis E virus/genetics , Mice , Mice, Inbred BALB C , Viral Proteins/administration & dosage , Viral Proteins/genetics
17.
Microsc Microanal ; : 1-10, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1641811

ABSTRACT

Liquid-electron microscopy (EM), the room-temperature correlate to cryo-EM, is a rapidly growing field providing high-resolution insights of macromolecules in solution. Here, we describe how liquid-EM experiments can incorporate automated tools to propel the field to new heights. We demonstrate fresh workflows for specimen preparation, data collection, and computing processes to assess biological structures in liquid. Adeno-associated virus (AAV) and the SARS-CoV-2 nucleocapsid (N) were used as model systems to highlight the technical advances. These complexes were selected based on their major differences in size and natural symmetry. AAV is a highly symmetric, icosahedral assembly with a particle diameter of ~25 nm. At the other end of the spectrum, N protein is an asymmetric monomer or dimer with dimensions of approximately 5­7 nm, depending upon its oligomerization state. Equally important, both AAV and N protein are popular subjects in biomedical research due to their high value in vaccine development and therapeutic efforts against COVID-19. Overall, we demonstrate how automated practices in liquid-EM can be used to decode molecules of interest for human health and disease.

18.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1621101

ABSTRACT

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/prevention & control , Dependovirus , Mice , Pandemics , RNA Interference , RNA, Small Interfering/genetics , SARS-CoV-2/genetics
19.
Biomedicines ; 9(9)2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1408454

ABSTRACT

Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4-46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.

20.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL